Control Growth Of Zno Nanorods By Chemical Bath Deposition: Study On Heat Treatment Effect

Bhagwat Nivruttti Pawar

Abstract


Chemical Bath Deposition (CBD) is a simple aqueous solution and easy and reproducible method employed for systematically growth of zinc oxide (ZnO) thin film on glass substrate. The investigations on the effect of annealing temperature on the structural, optical properties and morphology of ZnO nanorod deposited by chemical bath deposition have been carried out. The films were specula and adherent to glass substrate. It is found that, annealing temperature significantly influence the quality of ZnO thin films. We proceeded to anneal ZnO films in air for 60 min from 150ºC to 300 ºC. X-ray diffraction (XRD) pattern showed that the deposited ZnO thin films was exhibited a polycrystalline structure of the wurtzite with monophasic of  hexagonal shaed naorods. No other phases were observed in XRD pattern. ZnO lattice crystals transformed from agglomerated random growth to long-and-slim hexagonal rods as observed by scanning electron microscopy (SEM).This approach can provide a novel and simple route to obtain ZnO nanostructures hexagonal rods, which may improve the properties of nanostructure based devices. 


Keywords


Chemical bath, Structural, optical properties, wurtzite, ZnO nanorod

Full Text:

PDF

References


Yangyang Zhang, Manoj K. Ram, Elias K. Stefanakos and D. Yogi Goswami, Journal of Nanomaterials, Volume 2012 (2012), Article ID 624520, 22p.

V.R.Shinde, C.D.Lokhande, R.S.Mane, Sung-Hwan Han, Applies Sureface Science, 245 (2005) 407.

Sung-Hak Yi, Seung-Kyu Choi, Jae-Min Jang, Jung-A Kim, Woo-Gwang Jung, Journal of Colloid and Interface Science 313 (2007) 705-710.

J. Y. Park, H. Oh, J. J. Kim, S. S. Kim, Crystal Growth 287 (2006) 145-148.

T. Okada, B.H. Agung, Y. Nakata, Applied Physics A 2004. 79. 1417-1419.

Rajendra S. Gaikwad, Gauri R. Patil , Bhagwat N. Pawar, Rajaram S. Mane, Sung-Hwan Han. Sensors and Actuators A: Physical Sensors and Actuators A, 189 (2013) 339-343.

Zhang.R., Kerr lie L., Journal of solid state Chemistry, 108 (2007) 988-994.

Haikuo Sun, Ming Lio, Wenjian Weng, Kui Cheng, Piyi Du, Ge Shen and Gairong Han, Nanotrcnology, 19 (2008) 125603.

K. V. Gurav, V. J. Fulari, U. M. Patil, C. D. Lokhande, and O.-S. Joo, Applied Surface Science, 256 (2010), 2680-2685.

H. Xue, X.L. Xu, Y. Chen, G.H. Zhang, S.Y. Ma, Applied Surface science 255 (2008) 1806-1810.

S. Peulon and D. Lincot, Advance Materials. 8 (1996) 166-170.

Bunker. BC, Rieke PC, Tarasevich BJ, Campbell AA, Fryell GE, Gaff GL. Song L, Liu J, Virden JW, Mc Vay GL, Science, 264 (1994) 48-55.

Xiaofei Bie, Chunzhong Wang, H. Ehrenberg, Yingjin Wei, Gang Chen, Xing Meng, Guangtian Zou, Fei Du, Solid State Sciences,12 (2010)1364-1367.

Xiaolu Yan,Dan Hu, Hangshi Li, Phyica B 406 (2011) 3956-3962.

R. Chandramohan, T.A. Vijayan, S. Arumugam, H.B. Ramalingam, V. Dhanasekaran, K. Sundaram, T. Mahalingam, Material Science and Engineering B 176 (2011) 152–156.

Wang. J. X., Sun X.W, Yang Y., Huang H., Lee Y.C., Tan O. K., Vayssieres L., Nanotechnology, 17 (2008) 4995- 4998.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.