Effect of Concentration of Precursor on Intrinsic ZnO Thin Films by Spray Pyrolysis

Rajendra Sopan Gaikwad, supriya B Jagdale, Pallavi B Pol, Kakasaheb C Mohite, Bhagat N Pawar

Abstract


In this work, we have prepared chemically sprayed zinc oxide thin films (ZnO) on microscopic glass substrates. The films were deposited from a starting solution containing zinc acetate dehydrate. The influence of concentration of starting solution on the structural, morphological, optical and electrical properties of the ZnO thin films was studied. The structure of all the ZnO thin films was polycrystalline, and a variation in the intensity of preferential growth with the concentration of the solution was observed. The crystallite size was found to increase with precursor concentration and ranges from 56 to 95nm. The optimal deposition conditions leading to conductive and transparent ZnO thin films were also found. In this way a resistivity of 1.88 x 10-2 Ω-cm with a (0 02) preferential growth, were obtained in optimized ZnO thin films.  Due to their excellent optical and electrical properties, ZnO films are promising contender for their potential use as transparent window layer and electrodes in solar cells


Keywords


pyrolysis, Structural, morphological, optical properties, wurtzite, ZnO;

Full Text:

PDF

References


S. Subbaramaid, V. S. Raja, Solar Energy Materials and Solar Cells 32 (1994) 1.

M. Miki, E. Yoshida, E. Andrade, Thin Sold Films, 224 (1993) 87.

Pramod S. Patil, Materials Chemistry and Physics 59 (1999) 185.

R. Ayouchi, D. Leinen, F. Martin, M. Gabas, E. Dalchide, J. R. Ramos-Barrado, Thin Solid Films 426 (2003) 68.

P. Nunes, B. Fernandes, E. Forunato, P. Vilarinha, R. Martins, Thin Solid Films 337 (1999) 176.

F. Paraguay, W. Estrada, D. R. Acosta, E. Andrade, M. Miki-Yoshida, Thin Solid Films 350 (1999) 192.

M. G. Ambia, M. N. Islam, M. Obaidul Hakim, Solar Energy Materials & Solar Cells, 28 (1992) 103.

B. N. Pawar, Duk-Ho Ham, R. S. Mane, T. Ganesh, Byung-Won Cho, Sung-Hwan Han, Applied Surface Science 254 (2008) 6294.

M. L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, D.R. Acosta, Thin Solid Films 394 (2001) 242.

J. Ebothé, A. El Hichou, P. Vautrot, M. Addou, Journal of Applied Physics 93 (2003) 632.

L. Vasquez, R.C. Salvearezza, P. Herrasti, P. Ocon, J. M. Vara, A. J. Aravia, Physica Review B 52 (1995) 2032.

T. Y. Ma, D. K. Shim, Thin Solid Films 410 (2002) 8.

J. L. Van Heerrden, R. Swanepoel, Thin Solid Films 299 (1997) 72.

D. J. Goyal, C. Agashe, M. G. Takwale, B. R. Marathe and V. G. Bhide: Jn. of Material Science Lett, 11 (1992) 708.

B. D. Culty, Elements of X-ray Diffraction, Addison-Wesley, New York, 1978.

S. S. Shinde, P. S. Patil, R. S. Gaikwad, R. S. Mane, B. N. Pawar, K. Y. Rajpure, Journal of Alloys and Compounds 503 (2010) 416.

B. N. Pawar, G. Cai, D. Ham, R. S. Mane, T. Ganesh, A. Ghule, R. Sharma, K. D. Jadhava, S.H. Han, Solar Energy Materials and Solar Cells 93 (2009) 524.

D. Sivalingam, J. B. Grishnan, J. Rayappan, Sensors and Actuators B 166–167 (2012) 624.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.